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Networks of spiking neurons have been widely used as models to represent neuronal activity in the brain. These

models are reasonably realistic but they are also di�cult to treat analytically. Mean-field theory has nevertheless

proven to be successful as a method for deriving some of their statistical properties at equilibrium, such as the

distribution of firing rates, either in fully homogeneous networks [1], networks with Erdös-Rényi connectivity [2] or

networks which exhibit a large heterogeneity in their in- and out-degree distributions [3].

However, these models lack realism in the sense that they assume a fixed connectivity, whereas the connection

strengths in brain networks evolve in time according to plasticity rules that depend on the neuronal activity. We

have addressed this issue by extending the mean-field formalism to networks of leaky integrate-and-fire neurons with

connections that are defined by a static binary sca↵old but whose non-zero synaptic weights are prone to plastic,

activity-dependent modulation. This provides a set of equations whose solution specifies the stationary firing rate

and synaptic weight distributions.

The plasticity in our model is mediated by the introduction of spike traces, which are stochastic approximations

to the individual firing rates. The temporal evolution of the trace associated to one neuron is controlled by the

degradation speed of the trace (i.e., its “memory”) and by the mean temporal separation between consecutive

spikes. These time scales jointly determine a shift from a regime characterized by highly noisy traces to a regime

of accurate traces, and they in turn shape the system’s stationary distributions.

We show that the results are in good agreement with the distributions obtained by simulating the full spiking

dynamics for quite general forms of plasticity functions. Our formalism sheds light on the interplay between

the characteristic time scales of the neuronal and the plasticity dynamics, and can take into account the role of

di↵erent types of neuronal communities (for example inhibitory and excitatory subnetworks). Overall, it o↵ers a

new perspective to explore and better understand the way in which plasticity shapes both activity and structure in

neural networks.

Figure 1: Schematics of the model. Left: The network has a fixed, binary sca↵old on top of which the connection
weights can evolve in time. Center: The plasticity rule as a way to modify the weight of a given connection wji from neuron
i to neuron j. From the spiking times, stochastic variables b⌫i(t), b⌫j(t) (spikes traces) are updated and these provide an
estimation to the individual firing rates. The weight wji evolves as a function of the estimated rates. Right: The mean-field
equations allow to analytically compute the distribution of firing rates in the stationary state.
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