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The structure-function relationship is a classical – yet difficult – problem of network neuroscience [1]. In its simplest form,
one tries to predict the effect of network topology on emergent properties of the neural activity, such as synchronization [2].
Dimension-reduction is a common approach used for relating structure to function. For instance, in their seminal work [3],
Wilson andCowan combined this approachwithmean-field approximations to get a simplified dynamicalmodel and identify
two key factors for neural oscillations: the presence of inhibitory neurons (i.e., nodes with negative out-weight) and the
subdivision of the network into neuron populations (i.e., community structures). However, their model fails to predict some
observed oscillatory behaviors, especially when the size of the network remains finite [4].
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Fig. 1: States and
transitions.

We here refine the analysis of Wilson and Cowan. We consider a network of # nodes whose states
evolve stochastically according to a Markovian dynamics related to the Greenberg–Hastings cellular au-
tomata [5]. Specifically, the state of node 8 at time B is the random variable - 8 (B) with three possible
values, 0, 1, and 7, respectively representing the sensible, active, and refractory states. The possible states
and allowed stochastic transitions are illustrated in Fig. 1, with corresponding rates � , � , and 
 . The
activation rate � of a node is a nonlinear function of the states of its neighbors while the other transition
rates are constants. We have chosen the values 0, 1, and 7 to facilitate the analytical calculations. Yet,
without additional hypotheses, the evolution of the states remains intractable since it is governed by a
system of 3# differential equations.
To reduce the dimension of the problem, we first split the network into < populations sharing similar properties, as in

Fig. 2 (a). We then introduce population analogs to the state of a node: the random variables �� and '� , which are the
arithmetic means of the Re - 8’s and of the Im - 8’s in the population �. Moreover, to capture even more stochastic aspects of
neural interactions, we consider the covariances of the �� ’s and the '� ’s as dynamical variables. Finally, we take the expected
valuesA� := E[��] andR� := E['�] as well as those related to the covariances and end up with a reduced dynamical system
containing only <(2<+3) equations. When all covariances are neglected and some aspects of refractory states are simplified,
the reduced system tends to the < equations of the Wilson–Cowan model. Our theoretical work and numerical simulations
prove that the <(2< + 3)-dimensional reduced system, even in the simplest case of < = 2 populations illustrated in Fig. 2 (c),
possesses new oscillatory behaviors that would otherwise be missed.
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Fig. 2: (a) Network with < = 2 populations of neurons: excitatory (blue) and inhibitory (red). (b) Schematic of the reduced network
corresponding to (a). (c) Two solutions of the reduced dynamical system obtained numerically, both in the case of two populations as
in (a) and (b). The same parameters were used in both cases. The solution on top is obtained when taking into account the covariances,
while the one at the bottom is obtained when neglecting them. The labels � and � mean “excitatory” and “inhibitory”, respectively.


