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Real-world networks are often embedded in metric spaces constraining their connectivity. In a large
variety of cases, from powergrids to road and neural networks, these spatial restrictions emerge from
the minimization of the cost per edge as a function of the distance between the nodes. It has been
widely studied in the literature under the paradigm of random geometric graphs [1], spatial networks and
spatially embedded networks [2]. However, these networks are often treated as static, in contrast to real
complex systems for which evolution is ever present.

To address this issue, we have developed a spatial network growth model for which the connection
probability depends on the geometric distance between the nodes and on the time of growth event. From
this simple model emerge naturally some desirable network attributes, such as high clustering, formation
of rich-clubs, hierarchy and modularity.

Our initial study focuses on a simple version of our general model, namely a growing random geomet-
ric graphs with a time-dependent distance threshold for connection R(t) ∝ (t + τ)−α. At each growth
event, a new node is assigned a random position and is connected to his neighbors if the distance is
less than R(t). We obtain a number of theoretical results for this growth process and, in particular, we
validate the analytical solution of the degree distribution with Monte Carlo simulations (Fig. 1). Our
growth model offers a flexible framework to understand the structure of a variety of spatial and evolving
complex systems with applications ranging from powergrids to connectomics [3].
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Figure 1: (a) Example of a time-dependent random geometric graph with R(t) = τα(t + τ)−α, τ = 5,
α = 0.6 and the number of nodes N = 500. The age of the nodes is colour-coded, from red to white: red
nodes are the oldest whereas the white nodes have been created the latest in the growth process. Older
nodes can make longer connections than younger nodes and have a higher probability to be connected
with each other, thus forming a strong rich-club. (b) Degree distribution of the growing random geometric
graphs for different values of α with fixed τ = 50 and N = 1000. The blue dots are averaged results
of 10 Monte Carlo simulations while the green line corresponds to the analytical solutions. The growth
towards a power law behaviour is evident as well as a finite-size cut-off for the highest α.


