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Abstract

A standard problem in complex systems science has been to
understand how infectious diseases, information, or any other
contagion can spread within a system. Simple models of con-
tagions tend to assume random mixing of elements, but real
interactions are not random pairwise encounters: they occur
within clearly defined higher-order structures. These higher-
level structures could represent communities in social sys-
tems, cells in organisms or modules in neural networks. For
a broader understanding of contagion dynamics in complex
networks, we need to embrace higher-order structure, which
can itself take many forms such as simplicial complexes or
hypergraphs. To accurately describe spreading processes on
these higher-order networks and correctly account for the het-
erogeneity of the underlying structure, we use a set of approx-
imate master equations. This general framework allows us
to unveil and characterize important properties of these sys-
tems. Here we focus on three of them: the localization of
contagions within certain substructures, the bistability of the
stationary state and a crossover of the optimal seeding strate-
gies to maximize early spread.

To describe higher-order networks, we consider infinite-
size random hypergraphs, allowing mathematical treatments
akin to mean-field theory. Each node has an intrinsic
membership value m that indicates to how many structures
(called groups) they belong. Groups can be of various size
n, and both the membership and group size are distributed
according to a distribution gm and pn. We then assign nodes
to groups completely at random, formally creating a bipar-
tite structure. This structure can then be used to represent
various types of higher-order networks: we can project all
groups to fully connected cliques [3], or associate a group to
a simplex with the perspective of describing a contagion on
the resulting simplicial complex [2].

With this structure representation, we can describe con-
tagion processes on this random ensemble using approxi-
mate master equations (see Refs. [1, 4] for the approach),
providing a highly detailed description of the inner dynam-
ics within groups. This framework is amenable to analyti-
cal treatments, allowing us to distinguish different dynam-
ical regimes. For instance, in Fig. 1(a)-(b), we show the
phase transition associated with the Susceptible-Infectious-

Susceptible (SIS) model for two different types of struc-
tures. As expected, in both cases we see that there exists
two phases : for a transmission rate β ≤ βc, the contagion
does not persist in the population, while for β > βc, it in-
vades the system. Less expected is the fact that in one case,
all groups are affected beyond βc [Fig. 1(a)], while only the
largest structures are in the other [Fig. 1(b)]. This is what
we call a phenomenon of mesoscopic localization, affected
by the structural properties of the higher-order networks (see
Ref. [4] for more details). It is worth mentioning that meso-
scopic localization may have important repercussions on the
efficiency of an intervention to suppress epidemics [5].

Complex contagion models, where the infection rate of a
node increases non-linearly with the number of contagious
neighbors, give rise to even richer dynamical features. In
Fig. 2(a), we show the emergence of a bistable regime when
the non-linearity is large enough. This regime also clearly
depends on the underlying higher-order structure. Interest-
ingly, our approximate master-equation framework shows
that the first three moments of gm determine whether or not
it is possible to observe bistability. This is illustrated in fig-
ure 2(b), where we show the phase diagram for two different
values of 〈m3〉, while using the same first two moments 〈m〉
and 〈m2〉.

Higher-order networks also challenge our preconception
of what should be the optimal subset of nodes to infect in
order to invade a system as fast as possible. For simple
contagion models and considering only random pairwise in-
teractions, nodes with the most contacts should always be
favored. In our setting, this implies choosing nodes with
maximal membership m. This influential spreaders strategy
is, however, not always optimal for complex contagions on
higher-order networks. Indeed, for increasing non-linearity
of the contagion, we show in Fig. 2(c) that targeting and
choosing wisely which nodes to infect within groups, while
ignoring the membership of the nodes, becomes more prof-
itable. We call this strategy influential structures.

Altogether, our results highlight the importance of consid-
ering higher-order interactions in the modeling of complex
dynamical systems.
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Figure 1: Epidemic localization in networks with heterogeneous higher-order structures. We use power-law distributions
gm ∝ m−γm and pn ∝ n−γn . We use the SIS model, where contagious nodes transmit the disease to susceptible nodes in their
groups at rate β. (a)-(b) Solid lines represent the clique prevalence—the average fraction of contagious nodes within cliques
of size n—while dashed lines represent the global prevalence. (a) If groups are highly coupled (small γm, γn), we obtain a
standard collective activation of all substructures beyond the epidemic threshold. (b) With a lower coupling (larger γm, γn), we
find a phenomenon of mesoscopic localization. While the global prevalence in the population can remain extremely low, larger
substructures can self-sustain the epidemic. (c) Mesoscopic localization is actually the norm rather than the exception. Indeed,
the phenomenon is observed for all but the most extremely coupled scenarios. The solid line separating the delocalized regime
(blue region) and the mesoscopic localization regime (green region) is obtained analytically in Ref. [4]. The circle and diamond
markers correspond to the networks respectively used in panels (a) γn = γm = 2.2 and (b) γn = 3.5, γm = 4.

Figure 2: Complex contagions on higher-order networks lead to bistability and crossover on optimal seeding strategies.
We use a complex contagion model akin to Ref. [2]. In our setting, a susceptible node in a group of size n with i contagious
nodes becomes also contagious at rate λiν . For nodes belonging to multiple groups, the rates add up. (a)-(b) Global prevalence
as a function of the contagion strength λ, rescaled by the invasion threshold λc above which the contagion always invade
the system. Solid lines and dashed lines represent stable and unstable solutions respectively. (a) The structure is fixed with
gm = δm,3 and pn = δn,4. Values of ν ∈ {1.5, 1.7, νc, 2.1, 2.3} (bottom to top curves) were used, with bistability threshold
νc ≈ 1.91. (b) The contagion non-linearity is fixed at ν = 2.82 and the group size distribution is pn = δn,3. We use two
distributions for gm with different third moments but with the same first two moments 〈m〉 ≈ 5.03 and 〈m2〉 ≈ 30.2. (c) Initial
spreading speed (time derivative of the prevalence) for different strategies as a function of the contagion non-linearity. The
initial fraction of contagious nodes is I(0) = 10−2. We used a Poisson-like distribution of group sizes with mean 〈n〉 ≈ 5 and
a power-law distribution of memberships gm ∼ m−γm with γm = 3.8. The random strategy corresponds to simply infecting
nodes uniformly at random.



References
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