
Dimension reduction of high-dimensional dynamics on networks with adaptation

Vincent Thibeault1,2, Marina Vegué1,2, Antoine Allard,1,2 and Patrick Desrosiers1,2,3

1. Département de physique, de génie physique et d’optique, Université Laval, Québec (QC), G1V 0A6, Canada
2. Centre interdisciplinaire de modélisation mathématique de l’Université Laval, Québec (QC), G1V 0A6, Canada
3. CERVO Brain Research Center, Québec (QC), G1J 2G3, Canada

Adaptation is a defining property of complex systems. It is characterized by changes in the structure and the dynamics
of the system according to its environment and its own behavior [1]. For instance, neurons in the brain are connected
by synapses that increase or decrease in strength as a response to neuronal activity. Synaptic plasticity is known
to be an essential mechanism of learning and memory, but its precise role and its global influence on brain activity
remain unclear [2]. From a theoretical standpoint, the impact of adaptation on the neuronal dynamics’ equilibrium
points is hard to predict. This is partly due to the high dimensionality of the dynamical system describing adaptative
neuronal networks. Indeed, in addition to the ordinary differential equations (ODEs) describing the activity of all
neurons (nodes), there is another large set of ODEs governing the evolution of the strength (weight) of all synapses
(edges).

Based on our previous works [3-4], we introduce a new dimension reduction framework that systematically yields
a low-dimensional (reduced) adaptative dynamics from a high-dimensional (complete) adaptative dynamics. The
reduced dynamics accurately describes the complete Wilson-Cowan dynamics with three different adaptation rules:
Hebb’s rule, Oja’s rule, and even the biologically plausible Bienenstock-Cooper-Monroe’s (BCM) rule [5]. The Wilson-
Cowan dynamics with the BCM rule exhibits rich bifurcation phenomena that are well predicted by the reduced
adaptative dynamics [FIG. 1]. For instance, our dimension reduction framework captures the emergence of surprising
nonlinear oscillations in the firing rate and the synaptic strength which appear through a supercritical Hopf bifurcation.

Our framework is flexible: we can tune the number of observables as we want to describe adaptative networks with
more modules and heterogeneity. It also unlocks the possibility to perform dynamical analysis on large real networks
which paves the way towards a better understanding of emergent phenomena in the plastic brain.
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FIG. 1. Bifurcation diagram of the Wilson-Cowan dynamics with the BCM rule (10 200 ODEs) obtained from its reduced
dynamics (3 ODEs). The firing rate threshold µ is the midpoint of the sigmoidal activation function of the Wilson-Cowan
dynamics and τx is the time scale of the activity while τw is the one for the weights. Figures a-e illustrate the equilibrium points
of the mean global activity observable X vs. the mean global weight observable W when there is no adaptation and when there
is adaptation for the complete and reduced dynamics. These figures show that the reduced dynamics predicts accurately the
equilibrium points in every region of the bifurcation diagram. We choose a weighted Erdős-Rényi network with N = 100 and
p = 0.5 as an initial condition for the synaptic dynamics.
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