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Collective motion is characterized by coordinated behavior between the individuals of a group [1]. For instance,
in ecology, flocks with tens of thousands of birds have been observed to fly in unison at high speeds and execute
complex collective maneuvers. How the individuals communicate and change their behavior to sustain such
organized motions is still unclear [2]. A common approach to describe these phenomena is to define differential
equations of the position, the speed and the direction of each individual according to time. In these equations,
the laws of motions typically depend on the distances between neighbors, which is considered to be a crucial
factor for ordered motion [1, 3]. While the (distance-based) connections between individuals in these collectives
necessarily form a network, few studies have taken full advantage of Network Science tools to systematically
unravel the interaction patterns that shape collective motion in ecology. Since Network Science has been used
to characterize a wide range of complex systems [4], it appears that a Network Science of Collective Motion is
a promising venue for further insights.

FIG. 1. (a) Index of the individual with optimal eigenvector central-
ity value in the network At for each time t. The average maximum
eigenvector centrality value according to time is ∼0.12 and the average
minimum eigenvector centrality value according to time is ∼0.010. We
observe that only some individuals, i.e., those indexed from 0 to 75,
share the maximum centrality value for t ∈ [0, 2000]. (b) Remaining
fraction of nodes (blue curve) and links (orange curve) according to dif-
ferent values of backbone threshold α. The backbone threshold α = 0.25
(gray dashed lines) is selected to ensure that the thresholded network
had the same number of nodes as the original. This produced a net-
work with N = 150 nodes and M = 4453 links. (c) Degree distribution
of the backbone network. (Inset) Temporal network backbone, using a
Kamada-Kawai layout.

We propose a method to extract a temporal network
from the positions of collectively moving individuals.
We focus our study on motion that characterizes flock-
ing (i.e., where the individuals’ positions and velocities
are closely aligned). To do this, we simulate a series
of self-propelled collectives of flocking particles, using
a model known as the Couzin model [3]. This pro-
duces time series of positions for each individual in
the collective. Then, at each time step, t, we com-
pute the distances between each pair of individuals,
from which we create an adjacency matrix, At, that
describes the temporal network at each slice in time.
With the dominant eigenvectors of At for all t, we in-
vestigate which individuals are more or less central in
the network. We found that there is only a specific
group of individuals that share dominant centrality
according to time [FIG. 1. (a)]. This suggests that
there is a core of individuals that interact with more
neighbors than the individuals in the periphery. To
validate this intuition, we obtain the backbone of the
temporal network by averaging At across time and us-
ing the method proposed in Ref. [5] [FIG. 1. (b)].
Interestingly, the degree distribution of the backbone
network [FIG. 1. (c)] clearly distinguishes two groups
of individuals, one with a mean degree of ∼50 and
another with a mean degree of ∼90. These observa-
tions suggest that there is a strongly connected core of
leading individuals paving the way for close followers
in the flock. These results stimulate further exploration of network structures in real collective motion time
series.
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